Savings and consumption responses to persistent income shocks

Brian Higgins
Stanford

Terry O'Malley
Amazon

Fang Yao
Central Bank of Ireland

April 2022

Introduction

- Question:

How does consumption react to persistent income shocks?

Introduction

- Question:

How does consumption react to persistent income shocks?

- Today:

1 Data: micro data on bank accounts and mortgage from Ireland
a Identify unexpected persistent shock to mortgage payments (=income shock)
b Estimate response of bank balances to shock
b Use budget constraint to back out consumption response to shock
d Explore heterogeneity by balances in bank account and shock length
2 Model: Can standard consumption-savings explain the estimated responses?

Introduction

- Question:

How does consumption react to persistent income shocks?

- Today:

1 Data: micro data on bank accounts and mortgage from Ireland
a Identify unexpected persistent shock to mortgage payments (=income shock)
b Estimate response of bank balances to shock
b Use budget constraint to back out consumption response to shock
d Explore heterogeneity by balances in bank account and shock length
2 Model: Can standard consumption-savings explain the estimated responses?

- Main findings:

1 Average MPC $\partial c_{t} / \partial \tau_{t}$ is high: 0.91
2 By bank balance: 1.006 for lowest and 0.82 for highest balance quartiles
3 By shock length: 0.84 for 6-10 year shock; 0.63 for ≤ 5 year shock
4 Model matches average MPC with 62 quarter shock

Literature: MPCs

- Covariance restrictions. Hall \& Mishkin (1982), Blundell, Pistaferri \& Preston (2008)
- Subjective expectations. Hayashi (1985), Pistaferri (2001)
- Quasi-experimental.

Expected one-time shock. Shapiro \& Slemrod (1995, 2003, 2009), Souleles (1999, 2002), Hsieh (2003), Johnson, Parker \& Souleles (2006), Kueng (2018), Baugh, Ben-David, Park \& Parker (2021), Lewis, Melcangi \& Pilossoph (2021)
Unexpected one-time shock. Bodkin (1959), Agarwal \& Qian (2014), Fagereng, Holm \& Natvik (2020)
Expected persistent shock. Bernheim, Skinner \& Weinburg (2001), Aguiar \& Hurst $(2005,2007)$
Unexpected persistent shock. Di Maggio, Kermani, Keys, Piskorski, Ramcharan, Seru, \& Yao (2017),
Baker (2018), Ganong \& Noel (2019)

- Model comparison. Kaplan \& Violante (2014)
- Identification strategy. Byrne, Kelly \& O'Toole (2021)
- Irish household finance. Cussen, Lydon \& O'Sullivan, (2018), Horan, Lydon \& McIndoe-Calder (2020), Le Blanc, Lydon (2022)

Literature: MPCs

- Covariance restrictions. Hall \& Mishkin (1982), Blundell, Pistaferri \& Preston (2008)
- Subjective expectations. Hayashi (1985), Pistaferri (2001)
- Quasi-experimental.

Expected one-time shock. Shapiro \& Slemrod (1995, 2003, 2009), Souleles (1999, 2002), Hsieh (2003), Johnson, Parker \& Souleles (2006), Kueng (2018), Baugh, Ben-David, Park \& Parker (2021), Lewis, Melcangi \& Pilossoph (2021)
Unexpected one-time shock. Bodkin (1959), Agarwal \& Qian (2014), Fagereng, Holm \& Natvik (2020) Expected persistent shock. Bernheim, Skinner \& Weinburg (2001), Aguiar \& Hurst (2005, 2007) Unexpected persistent shock. Di Maggio, Kermani, Keys, Piskorski, Ramcharan, Seru, \& Yao (2017), Baker (2018), Ganong \& Noel (2019)

- Model comparison. Kaplan \& Violante (2014)
- Identification strategy. Byrne, Kelly \& O'Toole (2021)
- Irish household finance. Cussen, Lydon \& O'Sullivan, (2018), Horan, Lydon \& McIndoe-Calder (2020), Le Blanc, Lydon (2022)
- Our contribution

1 Estimate MPC using a quasi-experimental persistent income shock
2 Heterogeneity by initial bank balance and by length of the shock
3 Evaluate performance of standard consumption-savings model with persistent shocks

Message from the today

- Data: Average MPC $\partial c_{t} / \partial \tau_{t}$ is high: 0.91
- By bank balance: 1.006 for lowest and 0.82 for highest balance quartiles
- By shock length: 0.84 for 6-10 year shock; 0.63 for ≤ 5 year shock

Message from the today

- Data: Average MPC $\partial c_{t} / \partial \tau_{t}$ is high: 0.91
- By bank balance: 1.006 for lowest and 0.82 for highest balance quartiles
- By shock length: 0.84 for 6-10 year shock; 0.63 for ≤ 5 year shock
- Model: exactly matches average MPC with a 62 quarter income shock
- By bank balance: matches covariance, errors ≤ 0.08
- By shock length: matches covariance, errors >0.27

Message from the today

- Data: Average MPC $\partial c_{t} / \partial \tau_{t}$ is high: 0.91
- By bank balance: 1.006 for lowest and 0.82 for highest balance quartiles
- By shock length: 0.84 for 6-10 year shock; 0.63 for ≤ 5 year shock
- Model: exactly matches average MPC with a 62 quarter income shock
- By bank balance: matches covariance, errors ≤ 0.08
- By shock length: matches covariance, errors >0.27
- Comparison to literature:
- Higher MPC than literature (di Maggio et. al., MPC for cars=0.4; Baker elasticity = 0.33)
- Literature: Data MPC (0.5) >> Model MPC (0.05) for transitory shocks (Fagereng Holm \& Natvik)
- This paper: Data MPC \approx Model MPC for persistent shocks
\rightarrow Standard model performs comparatively well for persistent shocks

1. Data and consumption response

 2. Model of consumption-savings
Payment shock: variable and tracker mortgage interest rates

(a) Share of new mortgages issued by interest rate

- Overlap in variable/tracker samples •distributions

Payment shock: variable and tracker mortgage interest rates

(b) Divergence in ECB Tracker and Standard Variable
(a) Share of new mortgages issued by interest rate

- Overlap in variable/tracker samples *distributions

Data: mortgage and bank account data in Ireland

1 Mortgage data

- At origination: age, income, county, house price, mortgage size, interest rate
- Over time: outstanding balance, interest rate, days past due
- Six monthly, 2000-2016 for origination data; 2012-2016 for over time
- Estimate: current LTV w/ post code price index

2 Bank account data

- Average balance over quarter (quarterly), balance at end date (6 monthly).
- Checking and savings accounts
- Quarterly, Q3 2011 - Q4 2014
- Do not see accounts in multiple banks, or non-bank savings

3 Cleaning

- Household view: Link all mortgages, bank accounts for household
- Restrict to active (non-constant/zero) checking accounts (when using savings data)
- Mortgages originated 2000-2008
- Quarterly panel: Q3 2011 - Q4 2014
- $N \approx 10,000$ households $\times 14$ quarters $\approx 140,000$

Household finances in Ireland

How much of household savings are captured in our data:
1 How much of non-housing assets are in deposit savings

- Macro data: 91\% Quarterly Financial Accounts
- Micro data: 55% HFCS, evidence of large ($\approx 66 \%$) under reporting of deposits (Cussen, Lydon \& O'Sullivan, 2018)

Household finances in Ireland

How much of household savings are captured in our data:
1 How much of non-housing assets are in deposit savings

- Macro data: 91\% Quarterly Financial Accounts
- Micro data: 55% HFCS, evidence of large ($\approx 66 \%$) under reporting of deposits (Cussen, Lydon \& O'Sullivan, 2018)

2 How much of deposit savings are in bank accounts

- Bank deposits: 66\%
- Non-bank deposits (e.g. credit unions, Post Office): 34\%

Household finances in Ireland

How much of household savings are captured in our data:
1 How much of non-housing assets are in deposit savings

- Macro data: 91\% Quarterly Financial Accounts
- Micro data: 55% HFCS, evidence of large ($\approx 66 \%$) under reporting of deposits (Cussen, Lydon \& O'Sullivan, 2018)

2 How much of deposit savings are in bank accounts

- Bank deposits: 66\%
- Non-bank deposits (e.g. credit unions, Post Office): 34\%

3 How much of bank deposits are in a single bank

- Bank accounts per household in Ireland: 5.2
- Bank accounts per household in our data: 4
- We can check results for households with both checking and savings accounts
- Checking account MPC $=0.93$; Savings account MPC $=0.95$
\rightarrow Results are similar

Size of payment savings

Payment savings:

$$
\begin{array}{rlcr}
m_{t}^{\text {flow }} & =\text { pay }_{t}^{\text {variable }}-\text { pay }_{t}^{\text {tracker }}>0 & & \text { if tracker } \\
& = & 0 & \\
m_{t}^{\text {stock }} & = & \sum_{j=0}^{t} m_{j}^{\text {flow }} &
\end{array}
$$

Size of payment savings

Payment savings:

$$
\begin{array}{rlcc}
m_{t}^{\text {flow }} & =\text { pay }_{t}^{\text {variable }}-\text { pay }_{t}^{\text {tracker }}>0 & & \text { if tracker } \\
& = & 0 & \\
m_{t}^{\text {stock }} & = & \sum_{j=0}^{t} m_{j}^{\text {flow }} &
\end{array}
$$

Size of payment savings

Payment savings:

$$
\begin{array}{rlcl}
m_{t}^{\text {flow }} & =\text { pay }_{t}^{\text {variable }}-\text { pay }_{t}^{\text {tracker }}>0 & & \text { if tracker } \\
& = & 0 & \text { if variable } \\
m_{t}^{\text {stock }} & = & & \sum_{j=0}^{t} m_{j}^{\text {flow }}
\end{array}
$$

Median: 5% of income; 20\% of payments

Comparing variable and tracker mortgage borrowers (ex-ante)

(a) Income at origination

(b) Age at origination

(c) Mortgage balance at origination

Comparing variable and tracker mortgage borrowers (ex-post)

Q. Were trackers more likely to get income shocks?

- Use survey of mortgage holders 2012Q2 - 2013Q1 (Byrne, Kelly, O’Toole, 2021)

	Income Change				Unemployed		
	(1)	(2)	(3)		(4)		(5)
Tracker	$-0.254^{* * *}$	-0.129	0.029		-0.029	0.001	0.005
	(0.0683)	(0.0774)	(0.0611)		(0.0215)	(0.0244)	(0.0256)
Observations	616	616	593		626	626	593
Adjusted R^{2}	0.020	0.044	0.464		0.001	0.026	0.006
Origin year and bank FE		Yes	Yes			Yes	Yes
Controls			Yes			Yes	

Regression: savings response

$$
\Delta b_{i, t+k}=\beta_{0}+\beta_{k} \Delta m_{i, t+k}^{s t o c k}+\eta \mathbf{X}_{i t}+\gamma_{t+k}+u_{i, t+k} \quad \text { for } \mathrm{k}=1, \ldots, 12
$$

- $\Delta b_{i, t+k}$ is the change in bank balance of household i between quarter t and $t+k$
- $\Delta m_{i, t+k}^{\text {stock }}$ is change in stock payment savings between t and $t+k$
- $\Delta m_{i, t+k}^{\text {stock }}>0$ if tracker mortgage
- $\Delta m_{i, t+k}^{\text {stock }}=0$ if variable mortgage
- $X_{i t}$ is a vector of observable controls
- γ_{t+k} are time fixed effects
- Variations:
- logs and levels
- pooled and different time horizons

Result: Savings response at many horizons

- 12 quarter estimate
- $M P S_{t+12}=0.074 ;$
- Implied MPC= 0.93
- $M P S_{t+h}=\sum_{s=0}^{h}(1+r)^{h-s}(1-M P C)$
- Average pooled estimate
- MPS = 0.087;
- Implied MPC = 0.913

MPC heterogeneity

1 Average MPC=0.913 (MPS=0.087). . table
2 Split samples
a Savings balances at 2011Q3: > table

- Lowest balance quartile: 1.006
- Highest balance quartile: 0.82
b Mortage maturity at 2010Q1: • table
- $<=5$ year to maturity: 0.46 (imprecise)
- 6-10 year to maturity: 0.84
- >10 year to maturity: 0.93

1.Data \& consumption response

2. Model of consumption-savings

Consumption-savings problem by households

Households solve infinite horizon problem

$$
\begin{aligned}
\max _{c, a} & \sum_{t=0}^{\infty} \mathbf{E}_{0}\left[\beta^{t} \frac{c_{t}^{1-\sigma}}{1-\sigma}\right] \\
c_{t}+a_{t} & =(1+r) a_{t-1}+e_{t}+\tau_{t} \\
a & \geq 0 \\
\ln e_{t} & =\rho_{e} \ln e_{t-1}+\epsilon_{t} \quad \epsilon_{t} \sim \mathcal{N}\left(0, \sigma_{e}^{2}\right)
\end{aligned}
$$

Perfect foresight for path $\left\{\tau_{s}\right\}_{s \geq 0}$.
Compare to stationary distribution with $\tau_{s s}=0$

Consumption-savings problem by households

Households solve infinite horizon problem

$$
\begin{aligned}
\max _{c, a} & \sum_{t=0}^{\infty} \mathbf{E}_{0}\left[\beta^{t} \frac{c_{t}^{1-\sigma}}{1-\sigma}\right] \\
c_{t}+a_{t} & =(1+r) a_{t-1}+e_{t}+\tau_{t} \\
a & \geq 0 \\
\ln e_{t} & =\rho_{e} \ln e_{t-1}+\epsilon_{t} \quad \epsilon_{t} \sim \mathcal{N}\left(0, \sigma_{e}^{2}\right)
\end{aligned}
$$

Perfect foresight for path $\left\{\tau_{s}\right\}_{s \geq 0}$.
Compare to stationary distribution with $\tau_{s s}=0$
Policies $c_{t}^{*}\left(e_{t}, a_{t-1} ; \boldsymbol{\tau}\right)$ and $a_{t}^{*}\left(e_{t}, a_{t-1} ; \boldsymbol{\tau}\right)$
Distribution's law of motion $D_{t+1}\left(e_{t+1}, a_{t}\right)=\sum_{e_{t}} D_{t}\left(e_{t}, a_{t}^{*-1}\left(e_{t}, a_{t} ; \tau\right)\right) \mathcal{P}\left(e_{t}, e_{t+1}\right)$

Consumption-savings problem by households

Households solve infinite horizon problem

$$
\begin{aligned}
\max _{c, a} & \sum_{t=0}^{\infty} \mathbf{E}_{0}\left[\beta^{t} \frac{c_{t}^{1-\sigma}}{1-\sigma}\right] \\
c_{t}+a_{t} & =(1+r) a_{t-1}+e_{t}+\tau_{t} \\
a & \geq 0 \\
\ln e_{t} & =\rho_{e} \ln e_{t-1}+\epsilon_{t} \quad \epsilon_{t} \sim \mathcal{N}\left(0, \sigma_{e}^{2}\right)
\end{aligned}
$$

Perfect foresight for path $\left\{\tau_{s}\right\}_{s \geq 0}$.
Compare to stationary distribution with $\tau_{s s}=0$
Policies $c_{t}^{*}\left(e_{t}, a_{t-1} ; \boldsymbol{\tau}\right)$ and $a_{t}^{*}\left(e_{t}, a_{t-1} ; \boldsymbol{\tau}\right)$
Distribution's law of motion $D_{t+1}\left(e_{t+1}, a_{t}\right)=\sum_{e_{t}} D_{t}\left(e_{t}, a_{t}^{*-1}\left(e_{t}, a_{t} ; \tau\right)\right) \mathcal{P}\left(e_{t}, e_{t+1}\right)$
Calibration: $\sigma=2, r=0.01, \beta=0.98, \rho_{e}=0.966, \sigma_{e}=0.5$ (Auclert, et. al.) $\tau=0.04, \tau / e=[0.15,0.1,0.07,0.05,0.03,0.02,0.01]$ interquartile range $\approx 3-7 \%$ income

[^0]
Computing MPCs

Individual MPCs

$$
M P C_{t}\left(e_{t}, a_{t-1} ; \tau\right)=\left[c_{t}^{*}\left(e_{t}, a_{t-1} ; \tau\right)-c_{s s}^{*}\left(e_{t}, a_{t-1}, 0\right)\right] / \tau
$$

Computing MPCs

Individual MPCs

$$
M P C_{t}\left(e_{t}, a_{t-1} ; \tau\right)=\left[c_{t}^{*}\left(e_{t}, a_{t-1} ; \tau\right)-c_{s s}^{*}\left(e_{t}, a_{t-1}, 0\right)\right] / \tau
$$

Average $C_{t}(\boldsymbol{\tau})=\sum_{e} \int_{a} c_{t}^{*}\left(e_{t}, a_{t-1} ; \tau\right) D_{t}\left(e_{t}, a_{t-1}\right)$

Average MPC

$$
M P C_{t}(\boldsymbol{\tau})=\left[C_{t}(\boldsymbol{\tau})-C_{s s}(0)\right] / \tau
$$

The model experiment

Comparing model and data

- MPC errors (data-model) $=[-0.004,-0.021,0.084,0.071]$
- Close quantitatively relative to 1 time shock

Comparing model and data

- MPC errors (data-model) = [-0.004, -0.021, 0.084, 0.071]
- Close quantitatively relative to 1 time shock

Comparing length of the shock

- Smaller MPC for less persistent shocks in both model and data
- Data > model errors increase with less persistent shocks

Conclusions

- Compared savings responses in model and data with persistent shocks

1 Data: Average MPC is high 0.92

- By bank balance: Lower MPC (0.82) for high bank balance consumers
- By shock length: Lower MPC (0.84) for shorter (6-10 year) shocks

2 Model: matches average MPC with 62 quarter shock

- By bank balance: matches covariance, error ≤ 0.08
- By shock length: matches covariance, error >0.27

3 Takeaway:

- Literature: Data MPC >> Model MPC for transitory shocks
- This paper: Data MPC \approx Model MPC for persistent shocks
\rightarrow Standard model performs comparatively well for persistent shocks
- Bonus:
- How do defaults depend on balances? Defauts \bullet Tracker variable

Thank you

Bellman

The value function at time t is

$$
\begin{aligned}
& V_{t}\left(e, a_{-}\right)=\max _{c, a}\left\{\frac{c^{1-\sigma}}{1-\sigma}+\beta \sum_{e^{\prime}} V_{t+1}\left(e^{\prime}, a\right) \mathcal{P}\left(e, e^{\prime}\right)\right\} \\
& c+a=(1+r) a_{-}+e+\tau \\
& a \geq 0 \\
& \ln e_{t}=\rho_{e} \ln e_{t-1}+\epsilon_{t} \quad \epsilon_{t} \sim \mathcal{N}\left(0, \sigma_{e}^{2}\right)
\end{aligned}
$$

Perfect foresight for aggregate path $\left\{\tau_{s}\right\}_{s \geq 0}$.
Compare against stationary dist with $\tau_{s s}=0$
Policies $c_{t}^{*}\left(e, a_{-} ; \tau\right)$ and $a_{t}^{*}\left(e, a_{-} ; \boldsymbol{\tau}\right)$
Distribution's law of motion $D_{t+1}\left(e^{\prime}, a\right)=\sum_{e^{\prime}} D_{t}\left(e^{\prime}, a_{t}^{*-1}(e, a ; \tau)\right) \mathcal{P}\left(e, e^{\prime}\right)$

- back

Warm up: one period shock , shockatuarere 40

- Here: $M P C_{t=0}=\frac{r}{1+r}$ when $\beta=1 / R$
$M P C_{t=0}$ at impact 0.043 with risk and $\beta<1 / R$;
- Kaplan Violante (2014) One-asset: $M P C_{t=0} \approx 0.03$ (non-HtM), $0.15(\mathrm{HtM})$
- Data: $M P C_{t=0} \approx 0.5$ Fagereng, Holm and Natvik (2020)

Warm up: one period shock

- back

Asset distribution in steady state

- back

Other model experiments

- Responses are larger to negative shocks, though not by much for this shock size $>$ link

Positive versus negative shocks

- back

Policy functions

- back

Policy function lowest e state

Average savings responses

- back

Average consumption responses

Consumption

Average responses

- back

Tracing out the default threshold: LTI-balance space

- back
(a) Default propensity
(b) Defaults

Distribution of observations

(a) Distribution of observations

Distribution of variable and tracker mortgage borrowers

- back

Pooled Marginal Propensity to save (MPS)

- back

$$
\Delta b_{i, t+1}=\beta_{0}+\beta_{1} m_{i t}+\eta X_{i t}+\gamma_{t}+u_{i t}
$$

	(1) Savings	(2) Log Savings	(3) Δ Savings	(4) Δ Log Savings	(5) Savings	(6) Log Savings	Δ Savings	Δ Log Savings

MPS heterogeneity: by balance quartiles

	Savings				Log Savings			
	(1) Lower	(2) Quartile 2	(3) Quartile 3	(4) Upper	(5) Lower	(6) Quartile 2	(7) Quartile 3	(8) Upper
Cumulative Payment Difference	$\begin{gathered} \hline-0.006 \\ (0.0071) \end{gathered}$	$\begin{gathered} 0.043 \\ (0.0204) \end{gathered}$	$\begin{gathered} 0.038 \\ (0.0431) \end{gathered}$	$\begin{gathered} \hline 0.176^{*} \\ (0.0660) \end{gathered}$				
Log Cumulative Payment Difference					$\begin{gathered} 0.039 \\ (0.0441) \end{gathered}$	$\begin{gathered} 0.123^{*} \\ (0.0525) \end{gathered}$	$\begin{aligned} & 0.161^{* *} \\ & (0.0510) \end{aligned}$	$\begin{gathered} 0.083 \\ (0.0428) \end{gathered}$
Observations	34118	32116	33936	38346	34117	32115	33932	38337
Adjusted (R^{2})	0.516	0.403	0.469	0.854	0.813	0.537	0.571	0.769
Individual FE	Yes							
Quarter FE	Yes							
Controls \times Quarter FE	Yes							
$\operatorname{Prob}(\beta=1)$	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

MPS heterogeneity: by quarters to maturity

- back
- Compute time to maturity when shock starts 2010Q1

	Δ Savings			Δ Log Savings		
	(1) $\leq 5 y e a r s$	$\begin{gathered} \text { (2) } \\ 6-10 y e a r s \end{gathered}$	(3) >10 years	(4) ≤ 5 years	(5) 6-10 years	(6) >10 years
D.Cumulative Payment Difference	$\begin{gathered} 0.394 \\ (0.2059) \end{gathered}$	$\begin{gathered} \hline 0.161^{*} \\ (0.0651) \end{gathered}$	$\begin{gathered} \hline 0.076^{*} \\ (0.0268) \end{gathered}$			
D.Log Cumulative Payment Difference				$\begin{aligned} & 0.130^{* * *} \\ & (0.0206) \end{aligned}$	$\begin{gathered} 0.022 \\ (0.0332) \end{gathered}$	$\begin{gathered} 0.031 \\ (0.0313) \end{gathered}$
Observations	10634	23153	94835	10632	23149	94826
Adjusted R^{2}	-0.004	0.003	0.003	-0.005	-0.006	0.003
Individual FE						
Quarter FE	Yes	Yes	Yes	Yes	Yes	Yes
Controls \times Quarter FE	Yes	Yes	Yes	Yes	Yes	Yes
$\operatorname{Prob}(\beta=1)$	0.012	0.000	0.000	0.000	0.000	0.000

Standard errors in parentheses.

Size of payment shock

Figure: Box plot of size of payment difference
(a) Euro value

(b) Percent difference (relative to variable payment)

Note: Percent is relative to the first lien only.

Tracing out the default threshold: LTV-balance space

- Stylized default decision: $V_{t}\left(y, b, \frac{m}{p}\right)=\max \left\{V_{t}^{\text {pay }}\left(y, b, \frac{m}{p}\right), V_{t}^{\text {default }}\left(y, b, \frac{m}{p}\right)\right\}$
(a) Default propensity

1.7	0.46	0.26	0.14	0.14	0	Default rate
1.5	0.37	0.25	0.12	0.06	0.04	
$\stackrel{m}{\circlearrowleft}_{\stackrel{m}{\leftarrow}}^{1.3}$	0.32	0.21	0.1	0.02	0.04	
	0.21	0.15	0.08	0.04	0.05	0.4
0.9	0.2	0.13	0.05	0.05	0.03	0.3
>0.7	0.22	0.09	0.04	0.03	0.02	
0.5	0.16	0.09	0.05	0.02	0.03	0.0
$0.3-$	0.09	0.05	0.04	0.02	0.01	
0.1	0.07	0.02	0.01	0	0	
	155	547	1156		5374	
Balance at 2011Q3 (Euro)						

- Many other dimensions of heterogeneity: •Balance-LT-space \rightarrow Distribution \rightarrow Mean balances
- Do not observe income, but can use our "disposable income" shocks >back

Tracing out the default threshold: LTV-balance space

- Stylized default decision: $V_{t}\left(y, b, \frac{m}{p}\right)=\max \left\{V_{t}^{\text {pay }}\left(y, b, \frac{m}{p}\right), V_{t}^{\text {default }}\left(y, b, \frac{m}{p}\right)\right\}$
(a) Default propensity

1.7	0.46	0.26	0.14	0.14	0	Default rate
1.5	0.37	0.25	0.12	0.06	0.04	
1.3 -	0.32	0.21	0.1	0.02	0.04	
닫 1.1	0.21	0.15	0.08	0.04	0.05	
ก 0.9 -	0.2	0.13	0.05	0.05	0.03	0.3
>0.7 -	0.22	0.09	0.04	0.03	0.02	0.1
$0.5-$	0.16	0.09	0.05	0.02	0.03	0.0
$0.3-$	0.09	0.05	0.04	0.02	0.01	
0.1 -	0.07	0.02	0.01	0	0	
	155				5374	
Balance at 2011Q3 (Euro)						

(b) Defaults

- Many other dimensions of heterogeneity:
- Do not observe income, but can use our "disposable income" shocks >back

Comparing tracker and variable mortgages

- back

Tracing out the default threshold: LTV-balance space

- back
- Stylized default decision: $V_{t}\left(y, b, \frac{m}{p}\right)=\max \left\{V_{t}^{\text {pay }}\left(y, b, \frac{m}{p}\right), V_{t}^{\text {default }}\left(y, b, \frac{m}{p}\right)\right\}$
(a) Default propensity

(b) Defaults

Summary statistics

	Mean	P10	P25	P50	P75	P90
No of liens	1.69	1	1	1	2	3
No of deposit accounts	3.97	3	3	3	5	6
Dublin (\%)	51					
Borrower Age	46.32	35	40	46	52	59
Total Account Balance	8346	42.25	565.17	2230.16	8531.59	25823.85
Total Quarterly Average Account Balance	8060	245.53	619.77	2093.94	8315.22	24498.02
Current Loan-to-Value	72	7	23	59	109	156
Oustanding Balance	137508	16104	44148.76	109519.28	203884.44	300785.29
Quarterly Mortgage Payments	3050.06	973.3	1637.15	2642.15	3913.48	5656.83
Current Interest Rate (\%)	4	2	5	5	5	5
Income at Origination	69796.72	31400	44632	62500	87562.18	120146.41
Quarters to Maturity	56.95	13	27	54	85	105
Tracker Rate (\%)	18					
SVR Rate (\%)	79					
Primary Dwelling Home (\%)	83					

Comparing across asset quartiles

- Split SS distribution by asset quartiles *distribution

Consumption

[^0]: - Bellman

